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Abstract—For many spatio-temporal applications, building
regression models that can reproduce the true data distribution
is often as important as building models with high prediction
accuracy. For example, knowing the future distribution of daily
temperature and precipitation can help scientists determine their
long-term trends and assess their potential impact on human
and natural systems. As conventional methods are designed to
minimize residual errors, the shape of their predicted distribution
may not be consistent with their actual distribution. To overcome
this challenge, this paper presents a novel, distribution-preserving
multi-task learning framework for multi-location prediction of
spatio-temporal data. The framework employs a non-parametric
density estimation approach with L2-distance to measure the
divergence between the predicted and true distribution of the
data. Experimental results using climate data from more than
1500 weather stations in the United States show that the proposed
framework can reduce the distribution error by more than 15%
compared to non-distribution preserving approaches without
degrading the prediction accuracy significantly.

Index Terms—Multi-task learning, spatio-temporal data, re-
gression

I. INTRODUCTION

Regression methods play an important role in many spatio-
temporal applications as they can be used to solve a wide vari-
ety of prediction problems such as projecting future changes in
the climate system, predicting the crime rate in urban cities, or
forecasting traffic volume on highways. Although accuracy is
an important requirement, building models that can replicate
the future distribution of data is just as important since the
predicted distribution can be used for planning, risk assess-
ment, and other decision making purposes. For example, in
climate modeling, knowing the changes in future distribution
of climate variables such as temperature and precipitation can
help scientists to better estimate the severity and frequency of
adverse weather events in the future. In agricultural produc-
tion, the predicted distribution can be used to derive statistics
such as average length of future growing season or persistency
of wet and dry spells, which are important metrics for farmers
and agricultural researchers.

However, previous studies have shown that the distribution
of predicted values generated by traditional regression methods
are not always consistent with the true distribution of the
data even when the prediction errors are relatively low [1],
[2]. While distribution-preserving methods such as quantile
mapping [3] have been developed to overcome this limitation,
their prediction errors can still be high [1]. For example,
Figure 1(a) shows a comparison between the predicted values
of a non-distribution preserving model (Model 1) against
a distribution-preserving model (Model 2) on a set of 10

Figure 1: Comparison between the predictions of non-
distribution preserving (Model 1) and distribution preserving
(Model 2) methods in terms of their root mean squared errors
and cumulative distribution functions.

values. Although the first model has a much lower root mean
square error (RMSE) it does not fit well the tails of the
predicted distribution, as shown in Figure 1, compared to
the second model, which fits the distribution almost perfectly
but has a considerably higher RMSE. This has led to the
growing interest in developing techniques that can minimize
both prediction error and the divergence between the true and
predicted distributions [1], [2]. However, current techniques
are mostly designed for single task learning problems, i.e.,
to build a regression model for a single location. For multi-
location prediction, these models are trained independently,
and thus, often fail to capture the inherent autocorrelations
of the spatio-temporal data. In addition, their accuracy and
distribution fit are likely to be suboptimal for locations with
limited training data.

To account for spatial autocorrelation and the imbalanced
distribution of training data, there have been several recent
studies focusing on the development of multi-task learning
(MTL) methods [4] [5] for spatio-temporal data [6] [7]. MTL
learns a local model for each location, but leverages data
from other locations to improve its model performance. It
accomplishes this by assuming that the local models share
some common structure, which can be exploited to enhance
their predictive performance. Unfortunately, existing MTL
approaches are mostly focused on minimizing the residual
error, paying scant attention to how realistic is the overall
predicted distribution. As an example, consider the histogram
of monthly precipitation shown in Fig. 2 for a weather
station located in Bridgeport, Nebraska. The dashed blue line
shows the marginal distribution for precipitation predicted by
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Figure 2: Histograms of observed precipitation against esti-
mated precipitation produced by both distribution preserving
and non-distribution preserving multi-task regression methods.

GSpartan [7], a spatio-temporal multi-task learning approach.
Observe that GSpartan does not fully capture the shape of the
true distribution, particularly the dual peaks and the tails of
the curve. In contrast, the distribution-preserving multi-task
learning approach proposed in this paper does a better job
at representing the true distribution compared to GSpartan.
Although its RMSE increases slightly by 3.6%, the divergence
in its distribution improves significantly by more than 30%.

In this paper, we present a novel distribution-preserving
multi-task learning framework for spatio-temporal data. Our
framework assumes that the local models share a common
low-rank representation, similar to the assumption used in [7].
It also employs a graph Laplacian regularizer based on the
Haversine spatial distance to preserve the spatial autocorrela-
tion in the data. A non-parametric kernel density estimation
approach with L2-distance is used to determine the divergence
between the predicted and true distributions of the data. Both
the distribution fitting and multi-task learning are integrated
into a unified objective function, which is optimized using a
mini-batch accelerated gradient descent algorithm. Experimen-
tal results using a real-world climate dataset from the Global
Historical Climatology Network (GHCN) showed that the
proposed distribution preserving multi-task regression method
reduces the distribution error for more than 95% of the weather
stations considered in this study, with an average gain of
20%. Our approach also outperforms a distribution-preserving
single-task regression method called contour regression [1] in
more than 77% of the weather stations.

II. PRELIMINARIES

Our framework is designed not only to learn accurate local
regression models, but also to generate predictions that are
consistent with the true distribution of the data. This requires
an approach for estimating the density function of the response
variable and a divergence measure to compute the difference
between two distributions. We review these approaches in this
section.

A. Density Estimation

There are various density estimation methods that have been
proposed in the literature. In general, these methods can be
divided into two categories:

• Parametric Methods, which assume that the density
function follows certain parametric distribution, such as
Gaussian, Gamma, exponential and so on. The sam-
pled data points are used to estimate parameters of
the distribution. As the number of parameters tends to
be small, parametric methods has an advantage in that
they do not require a large number of points to fit the
density function. Unfortunately, many real-world datasets
may not follow the standard distributions as they often
comprise of complex mixtures of distributions, which
leads to imprecise estimation of their true distribution.

• Non-parametric Methods, which avoid making a priori
assumption about the shape of the distributions. Two
popular methods are the K-nearest neighbor (KNN) ap-
proach and kernel density estimation. The KNN approach
uses only the k nearest neighbors to estimate the density
function whereas the kernel density estimation (KDE)
approach uses a mixture of Gaussian distributions cen-
tered at all the data points with a smoothing kernel width
parameter, h.

Due to the generality of the approach for fitting unknown
distribution, we employ the KDE approach to approximate the
density function. Given N data points sampled from an un-
known distribution of a variable Y , y = {yi|, i = 1, 2, ..., N},
the density function of Y is estimated as follows:

Py(Y = y) =
1

N

N∑
i

G(y|yi, h2) (1)

B. Divergence Measures

A divergence measure can be used to estimate the difference
between two density functions. This section reviews some of
the divergence measures used in this paper. Although there are
other measures available, evaluating them is beyond the scope
of this paper and is a subject for future research.

1) RMS-CDF: RMS-CDF is a measure defined in [1] to
compare two empirical cumulative distribution functions. Let
y and ŷ denote vectors of length N sampled from two
distributions. The RMS-CDF measure between the pair of
distributions is computed as follows:

RMS-CDF =

√√√√ 1

N

N∑
i

(y(i) − ŷ(i))2 (2)

where y(i) represents the i-th largest value in y and ŷ(i) is the
i-th largest value in ŷ. The measure is obtained by sorting the
values in y and ŷ and computing the average sum of squared
difference between their sorted values.



Table I: Summary of notations used in the paper.

Notation Definition
S number of stations(tasks)
Ns number of observations in task s
d number of features
k number of latent factors, k < d

Xs ∈ <Ns×d predictor matrix for station s
ys or
ŷs ∈ <Ns×1

observed or estimated
response samples at station s

Py(Y ) or
Pŷ(Y )

density function of Y estimated
by observed(or estimated) samples

W ∈ <d×S model parameter
U ∈ <d×k latent factors
V ∈ <k×S linear coefficients for latent factors
h, ĥ Parzen window widths for y and ŷ
G(y|µ, σ) Gaussian distribution
Q ∈ <S×S pairwise Haversine distances
A ∈ <S×S adjacency matrix, where Aij = 1

exp(Qij/γ)

D ∈ <S×S a diagonal matrix, Dii =
∑
j Aij

2) L2 Distance: Given a pair of random variables, Y and Ŷ ,
along with their respective probability density functions, PY
and PŶ , their L2-Distance can be calculated as follows [8]:

L2(PY , PŶ ) =

∫
(PY (y)− PŶ (y))2dy

Unlike RMS-CDF, L2-Distance measures the divergence of
two distribution based on probability density functions instead
of their cumulative distribution functions.

III. PROPOSED FRAMEWORK

This section introduces our proposed framework for
distribution-preserving multi-task regression. The framework
uses kernel density estimation (KDE) to estimate the proba-
bility density function. KDE provides a flexible approach for
modeling the density function of unknown distributions unlike
other parametric approaches. We also employ an L2-Distance
to measure the difference between two density functions.

A. L2-Distance for two KDEs

We now derive our approach for computing the divergence
between two estimated probability distributions, using the
Gaussian kernel density estimator with L2-Distance. Let Y
be a random variable. Consider two N -dimensional vectors
y = [y1, y2, ...yN ]T and ŷ = [ŷ1, ŷ2, ...ŷN ]T , where the yi’s
and ŷj’s are randomly drawn from the sample space of Y . The
density functions for Y estimated using Gaussian KDE from
the two sample vectors, Py(Y ) and Pŷ(Y ), can be written as:

Py(Y = y) =
1

N

N∑
i

G(y|yi, h2)

Pŷ(Y = y) =
1

N

N∑
i

G(y|ŷi, ĥ2)

where h and ĥ are the respective smooth window widths.
The following theorem presents the closed-form formula for
computing the L2-Distance between two estimated density
functions:

Theorem 1: L2-Distance between Py(Y ) and Pŷ(Y ) is:

L2(Py, Pŷ) =

∫
(Py(y)− Pŷ(y))2dy

=
1

N2

N∑
i,j

[
G(yi|yj , 2h2) +G(ŷi|ŷj , 2ĥ2)

− 2G(yi|ŷj , h2 + ĥ2)

]
a) Proof:: We begin by expressing the L2-Distance in

terms of their KDE functions:

L2(Py, Pŷ)

=

∫
(Py(y)− Pŷ(y))2dy

=

∫ (
1

N

N∑
i

G(y|yi, h2)− 1

N

N∑
i

G(y|ŷi, ĥ2)

)2

dy

Expanding the square yields the following expression:

L2(Py, Pŷ) =
1

N2

N∑
i,j

∫
G(y|yi, h2)G(y|yj , h2)dy

+
1

N2

N∑
i,j

∫
G(y|ŷi, ĥ2)G(y|ŷj , ĥ2)dy

− 2

N2

N∑
i,j

∫
G(y|yi, h2)G(y|ŷj , ĥ2)dy (3)

Based on the fact that the product of two Gaussian dis-
tributions, G(y|µ1, σ

2
1) and G(y|µ2, σ

2
2), can be written as

follows [9]:

G(y|µ1, σ
2
1)G(y|µ2, σ

2
2) = G(µ1|µ2, σ

2
1+σ2

2)×G(y|µ12, σ12),

where µ12 =
µ1σ

2
2+µ2σ

2
1

σ2
2+σ

2
1

, σ12 =
√

σ2
1σ

2
2

σ2
1+σ

2
2

.
Since

∫
G(y|µ, σ) = 1, the integral for the product of two

Gaussians can be written as:∫
G(y|µ1, σ

2
1)G(y|µ2, σ

2
2)dy = G(µ1|µ2, σ

2
1 + σ2

2)

Replacing this into Eq. (3) leads to the following;

1

N2

N∑
i,j

(
G(yi|yj , 2h2) +G(ŷi|ŷj , 2ĥ2)

−2G(yi|ŷj , h2 + ĥ2)

)
,

which completes the proof. �

B. DPMTL: Distribution-Preserving MTL Framework

Let D = {X ,Y} be a spatial-temporal dataset, where X =
{Xs|s = 1, 2, ..., S}, Y = {ys|, s = 1, 2, ...S}, and S
is the number of locations. Each Xs ∈ RNs×d is a d-
dimensional multivariate time series of predictor variables at
location s. Furthermore, Ns is the number of training examples



available at location s. The motivation for our spatial-temporal
distribution preserving approach is to learn a set of local linear
models, fs(x;ws) that minimizes the prediction error while
fitting the marginal distribution of Y .

Learning the local models amounts to estimating the weight
matrix W = [w1 w2 · · ·wS ] for all the stations. Due to the
inherent relationships between the prediction tasks at multiple
locations, our proposed framework assumes that W is not a
full rank matrix and can be decomposed into a product of two
low-rank matrices, U and V. These low-rank matrices can be
derived as follows:

min
U,V

L1 + αL2 + λL3,

s.t. W = UV, ŷs = Xsws (4)

where

L1 =

S∑
s

||ys − ŷs)||22

L2 = tr[W(D−A)WT )]

L3 =

S∑
s

{
1

N2
s

Ns∑
i,j

(
G(ysi|ysj , 2h2s)

+ G(ŷsi|ŷsj , 2ĥ2s)− 2G(ysi|ŷsj , h2s + ĥ2s)

)}
(5)

Our objective function consists of three loss functions: (1) L1,
which measures the residual errors on the training data, (2) L2,
which is a regularizer to ensure that the model parameters for
two neighboring locations should be close to each other, and
(3) L3, which measures the divergence between the true and
predicted distributions for Y .

For L2, an S × S similarity matrix A is calculated by
applying an RBF kernel on the Haversine distance [10], Qij ,
between two locations i and j, i.e., Aij = exp[−Qij/γ].
W ∈ Rd×S is the model parameter matrix, where each column
corresponds to the weights of the regression model for a given
station. Since W(D − A)WT =

∑S
s

∑S
r Ars(ws − wr)

2,
the second term corresponds to a graph Laplacian regularizer
to ensure that the spatial autocorrelation is preserved (due to
Tobler’s First Law of Geography [11]).

The first loss function L1 is designed to minimize pre-
diction error by learning the conditional probability function
Pys(Y |X). In contrast, the third loss function, L3, is de-
signed to accurately fit the marginal distribution Pys

(Y ) by
minimizing the L2-Distance between the true and estimated
density functions for all stations using Equation (5). The
hyperparameter λ is used to control the trade-off between
minimizing the two loss functions. Note that the local models
ws are assumed to share a common latent matrix U. Such an
assumption is useful especially for learning models at locations
with limited training data. Specifically, the model parameters
for each station s are assumed to be formed using a linear
combination of the dictionary (latent factors) in U, with vs(the
s-th column of V) specifying the coefficients of the linear
combination.

C. Optimization

We employ a mini-batch accelerated gradient descent ap-
proach to solve the optimization problem given in Equa-
tion (4). This requires us to derive the gradient of each term,
L1, L2 and L3, with respect to the model parameters.

For L1, the partial derivatives are given by:

∂L1

∂U
=

S∑
s

2XT
sXsUvsv

T
s − 2XT

s ysv
T
s (6)

∂L1

∂vs
= 2UTXT

sXsUvs − 2UTXT
s ys (7)

For L2, the partial derivatives are given by:

∂L2

∂U
= 2αUV(D−A)VT (8)

∂L2

∂V
= 2αUTUV(D−A) (9)

For L3, we first show the partial derivative of L2-Distance
with respect to ŷsm. The L2-Distance of each station, given
in Equation (5), is composed of three Gaussian kernels. Since
G(ysi|ysj , 2h2) is a constant with respect of ŷsm, its partial
derivative is:.

Ns∑
i,j

∂G(ysi|ysj , 2h2)

∂ŷsm
= 0

The derivative for the sum of pairwise Gaussian kernel of ŷs
is given as follows:

Ns∑
i,j

∂G(ŷsi|ŷsj , 2ĥ2)

∂ŷm

=
−1

2ĥ2
G(ŷsi|ŷsj , 2ĥ2)

×
[
1{i = m} − 1{j = m}

]
(ŷsi − ŷsj)

=

Ns∑
j

−1

2ĥ2
G(ŷsm|ŷsj , 2ĥ2)(ŷsm − ŷsj)

−
Ns∑
i

−1

2ĥ2
G(ŷsi|ŷsm, 2ĥ2)(ŷsi − ŷsm)

=
−1

ĥ2

Ns∑
i

G(ŷsm|ŷsi, 2ĥ2)(ŷsm − ŷsi)

The derivative for the cross-term Gaussian kernels is
Ns∑
i,j

∂G(ŷsi|ysj , h2 + ĥ2)

∂ŷsm

=

Ns∑
i,j

−1

h2 + ĥ2
G(ŷsi|ysj , h2 + ĥ2)

×1{i = m}(ŷsi − ysj)

=
−1

h2 + ĥ2

Ns∑
i

G(ŷsm|ysi, h2 + ĥ2)(ŷsm − ysi)



Putting together all three derivatives, the partial derivative of
L3 w.r.t. ŷsm is given by

∂L3

∂ŷsm
=

λ

Ns
2

[
2

h2 + ĥ2

Ns∑
i

G(ŷsm|ysi, h2 + ĥ2)(ŷsm − ysi)

− 1

ĥ2

Ns∑
i

G(ŷsm|ŷsi, 2ĥ2)(ŷsm − ŷsi)
]

(10)

Furthermore, denoting xsm ∈ <d×1 (the m-th row of Xs), the
partial derivative of ŷsm with respect to U and V are:

∂ŷsm
∂U

= xTsmvTs ∈ Rd×k,
∂ŷsm
∂vs

= UTxTsm ∈ Rk×1

By applying chain rule, we obtain:

∂L3

∂U
=

S∑
s

Ns∑
m

∂L3

∂ŷsm
× ∂ŷsm

∂U
(11)

∂L3

∂vs
=

Ns∑
m

∂L3

∂ŷsm
× ∂ŷsm

∂vs
(12)

D. Algorithm

Equation (10) requires us to compute both G(ŷsm|ysi, h2 +
ĥ2) and G(ŷsm|ŷsi, 2ĥ2), which takes O(Ns). Furthermore,
computing the partial derivative of L3 w.r.t all ysm, s =
1, 2, ..., S,m = 1, 2, ..., Ns requires O(SN2). To speed up
the computation, we employ a mini-batch Gradient Descent
(MGD) approach at each iteration, where instead of using all
Ns points from each station, we use only a subset of size
l < Ns. This reduces significantly the amount of computations
needed from O(SN2) to O(Sl2).

For each gradient descent update step at iteration t, let
the mini-batch data matrix be X

(t)
s ∈ Rl×d and the mini-

batch response vector be y
(t)
s ∈ Rl×1. For each station s, we

compute the following vector ps ∈ Rl×1 as the derivative of
1
2L3 on ŷs.

ps =
1

l2
(
Gs ◦Es

h2 + ĥ2
− Hs ◦ Fs

2ĥ2
) · 1 (13)

s.t Gs ∈ <l×l : Gs
ij = G(ŷ

(t)
si |y

(t)
sj , h

2 + ĥ2)

Hs ∈ <l×l : Hs
ij = G(ŷ

(t)
si |ŷ

(t)
sj , 2ĥ

2)

Es ∈ <l×l : Esij = ŷ
(t)
si − y

(t)
sj

Fs ∈ <l×l : Fsij = ŷ
(t)
si − ŷ

(t)
sj

i, j = 1, 2, ..., l

Thus, the gradient w.r.t U can be obtained by combining
Equations (6), (8), and (11) as follows:

∂L
∂U

= 2αUV(D−A)VT + 2

S∑
s

X(t)T
s X(t)

s Uvsv
T
s

−2

S∑
s

X(t)T
s (y(t)

s − λps)vTs (14)

Similarly, the gradient w.r.t V is obtained by combining
Equations (7), (9), and (12) to obtain:

∂L
∂V

= 2αUTUV(D−A) + [∆a1,∆a2, ...,∆aS ](15)

where, ∆as = 2UTX
(t)T
s X

(t)
s Uvs−2UTX

(t)T
s (y

(t)
s −λps).

Observe that ps can be viewed as an adjustment weighted
by λ on ys when calculating the gradients. In other words,
the gradient of the distribution-preserving term L3 adjusts the
role of y in calculating the gradients. Finally, the Mini-Batch
Gradient Descent(MGD) is implemented using the Accelerated
Gradient Descent (AGD) approach in order to speed up the
search for local optimum [12]. A summary of the algorithm
is given in Algorithm 1.

Algorithm 1 DPMTL: Distribution Preserving Multi-task
Learning

TRAINING PHASE
Input: Training data X = {Xs}, Y = {ys}, A, hs,ĥs, τu,
τv , s = 1, 2...S.
Output: U, V = [v1,v2, ...vS ].
while not converge do
t = t+ 1;
for s = 1,2,...,S

randomly choose l sample data, X(t)
s and y

(t)
s ;

ŷ
(t)
s = X

(t)
s Uvs;

compute ps with equation (13);
end for
U = U− τu LU by equation (14);
V = V − τv LV by equation (15);

end while

PREDICTION PHASE
Input: Testing data X ∗ = {X∗s}, U, V.
Output: Predictions Y∗ = {ŷ∗s}.
for s = 1,2,...,S

ŷ∗s = X∗sUvs;
end for

IV. EXPERIMENTAL EVALUATION

We have conducted extensive experiments to evaluate the
performance of our proposed framework. The dataset and
baseline methods used in our experiments along with the
results obtained are described in this section.

A. Data and Preprocessing

We evaluated the proposed approach on monthly precipi-
tation data from the Global Historical Climatology Network
(GHCN) data [13]. The dataset spans a 540-month time
period, from January 1970 to December 2014. For brevity,
we consider only data from weather stations in the United
States (located between 24.74◦N to 49.35◦N and 66.95◦W
and 124.97◦W ). We also omit any station that has more than
50% missing values in its time series. The resulting dataset
contains precipitation data from 1,510 weather stations.



Table II: Predictor Variables from NCEP Reanalysis

Variable Description
cprat convective precipitation rate at surface
dlwrf longwave radiation flux at surface
dswrf solar radiation flux at surface
lftx surface lifted index
omega omega at sigma level 0.995
pr wtr precipitable water content
prate precipitation rate
rhum relative humidity at sigma level 0.995
slp Sea level pressure
thick850 thickness for 850-500mb
thick1000 thickness for 1000-500mb
tmax maximum temperature at 2 m
tmin minimum temperature at 2 m

We selected 13 predictor variables from the NCEP Reanal-
ysis [14] gridded dataset with the help of our domain expert.
A summary of the dataset is shown in Table II. The mapping
between the GHCN station and its NCEP Reanalysis grid is
established by finding the closest grid cell to each GHCN
station. Both the predictor and response variables of each
station are deseasonalized by subtracting the seasonal mean
for that station and dividing by the corresponding seasonal
standard deviation.

B. Baseline Algorithms

We compared the proposed framework, DPMTL, against the
following baseline algorithms:
• Global model: The data from all stations are combined

and used to train a global, lasso regression model.
• Local model: A local model is trained for each station

using only data from the given station.
• GSpartan: A spatio-temporal multi-task regression

method proposed in [7].
• Contour Regression: A distribution-preserving method

for time series prediction [1].
There are two major differences between the contour re-

gression method [1] and DPMTL. First, contour regression
is designed to improve distribution fit by minimizing the
discrepancy between the empirical cumulative density function
of the predicted and ground truth values, whereas DPMTL
applies L2-distance on probability density functions estimated
using KDE. Second, contour regression is a single-task learn-
ing method, unlike the multi-task learning method used in
DPMTL.

C. Evaluation Metrics

The evaluation metrics are defined on two scales—macro
and micro. Macro-scale metrics are computed by evaluating
the performance of each weather station independently and
then taking an average over all the stations. In contrast, micro-
scale metrics are computed by concatenating the predictions
from all stations into a single vector first before comparing
them against the ground truth, which is also from all stations.
The macro- and micro-scale metrics used in this study are
defined below, where ŷs corresponds to the predicted values
for station s and ys corresponds to their true values.

• RMSE: a measure of prediction error obtained by taking
the square root of the average sum-of-squared errors in
the predictions.

Macro RMSE =
1

S

S∑
s

√√√√ 1

Ns

Ns∑
i

(ysi − ŷsi)2

Micro RMSE =
1∑S
s Ns

√√√√ S∑
s

Ns∑
i

(ysi − ŷsi)2

• RMS-CDF: a metric defined in [1] to evaluate the fit
between two cumulative distribution functions created
from a finite sample of observations. The metric is
equivalent to applying RMSE on the ordered values of
the data.

Macro RMS-CDF =
1

S

S∑
s

√√√√ 1

Ns

Ns∑
i

(ys(i) − ŷs(i))2

Micro RMS-CDF =
1∑S
s Ns

√√√√ S∑
s

Ns∑
i

(ys(i) − ŷs(i))2

• L2-Distance: another metric for measuring the diver-
gence between two density functions, computed accord-
ing to the formula given in Theorem 1.

Macro L2-Distance

=
1

S

S∑
s

1

N2
s

Ns∑
i,j

(
G(yi|yj , 2h2) +G(ŷi|ŷj , 2ĥ2)

−2G(yi|ŷj , h2 + ĥ2)

)
Micro L2-Distance

=
1∑S
s Ns

S∑
s,r

Ns∑
i

Nr∑
j

(
G(ysi|yrj , 2h2)

+G(ŷsi|ŷrj , 2ĥ2)− 2G(ysi|ŷrj , h2 + ĥ2)

)
D. Experimental Setup

We apply 9-fold cross validation on the 45-year data (from
1970-2014) to evaluate the performance of various algorithms.
Each fold corresponds to 5 years or 60 months worth of data.
In each of the 9 rounds, 8 of the folds are selected to be
the training set while the remaining fold is used as test set.
Since the dataset has been standardized by their corresponding
month, we set the Parzen window width hs and ĥs to be half
of its variance, i.e., 0.5. The spatial autocorrelation matrix
A = exp(−Q/γ) is computed using the Haversine distance
Q, with γ = 100. The hyper-parameters α and λ are tuned
via nested cross-validation on the training data. The number
of latent factors k is set to 10 while the mini-batch size l is
chosen to be 64. For gradient descent, the step sizes τu and τv
are initialized to 10−7 and gradually decreased with increasing
number of iterations.



Table III: Summary of 9-fold cross validation results by using
8 folds for training and the remaining fold for testing.

Method Macro Micro

RMSE RMS
-CDF L2 RMSE RMS

-CDF
L2

(×10−5)
Global 0.7779 0.4484 0.1137 0.7863 0.4588 8.56
Local 0.7790 0.4277 0.1051 0.7869 0.4411 7.88
GSpartan 0.7728 0.4341 0.1090 0.7812 0.4486 8.18
Contour 0.8071 0.3623 0.0784 0.8156 0.3752 5.90
DPMTL 0.8032 0.3524 0.0750 0.8124 0.3672 5.66

Table IV: Summary of 9-fold cross validation results by using
only 1 fold for training and the remaining 8 folds for testing.

Method Macro Micro
RMSE RMS-CDF RMSE RMS-CDF

Contour 1.0967 0.4332 1.8945 1.4712
DPMTL 0.8189 0.3325 0.8209 0.3474

E. Experimental Results

Table III summarizes the performance of the various algo-
rithms. We compute the macro- and micro-scale metrics of the
9-fold nested cross validation and report their average results.
Figures 3a and 3b show the relative performance gain/loss of
DPMTL compared to each of the baseline algorithms. The
outperform ratio is calculated as follows:

Outperform Ratio =
Error(Baseline)− Error(DPMTL)

Error(Baseline)

The results suggest that there is a trade-off between mini-
mizing prediction error and distribution error. Non-distribution
preserving methods such as global lasso, local lasso, and
GSpartan tend to have lower RMSE at the expense of higher
distribution errors. The results in Figures 3a and 3b further
suggest that, although DPMTL has higher RMSE, the increase
in RMSE is only between 3% − 4%. However, the reduction
in distribution error it achieves is significantly higher, between
17.6% − 21.4% for macro average RMS-CDF and 16.7% −
20.0% for micro average RMS-CDF. DPMTL also outper-
forms contour regression, which is a distribution-preserving
single-task regression method, on all 3 metrics—macro/micro
RMSE, macro/micro RMS-CDF, and L2-Distance. The gain
over contour regression does not look significantly high due
to the large size of training data available at each station
(using 8 fold of the data for training and remaining fold for
testing during cross-validation). Table IV reports the cross
validation results when using only 1 fold as training set and
the remaining 8 folds as test set. With limited training data,
DPMTL significantly outperforms contour regression due to
the multi-task learning strategy it employs by leveraging data
from other stations to improve its prediction accuracy.

Although the results shown in Table III and Figure 3
provide an aggregated view on the performance of the various
algorithms, it is also useful to compare their performance
with respect to the individual stations. Figure 4 shows that
the percentage of stations in which DPMTL outperforms
each baseline method according to the given metrics. The
results suggest that DPMTL outperforms the global, local, and
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(b) Micro-level evaluation metrics.

Figure 3: Outperform ratio of DPMTL over baselines.
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Figure 4: Percentage of stations in which DPMTL outperforms
the baseline methods.
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(a) RMSE results for GSpartan.

-120 -110 -100 -90 -80 -70

longitude

25

30

35

40

45

50

la
ti
tu

d
e

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(b) RMSE results for DPMTL.

Figure 5: Comparison between the RMSE of each station for
GSpartan and DPMTL (figure best viewed in color).

GSpartan models in more than 95% of the stations (in terms of
their RMS-CDF) and almost 100% of the stations (in terms of
L2-Distance). DPMTL is also better than contour regression
in 61.06% of the stations (for RMS-CDF) and 77.28% of the
stations (for L2-Distance).

Figures 5a and 5b compare the RMSE obtained using
GSpartan against DPTML for all the stations used in our
dataset. While the RMSE for DPMTL is relatively worse than
GSpartan, the poor performance of DPMTL occurs at locations
where GSpartan also performs poorly. However, in terms of
their RMS-CDF, the maps shown in Fig. 6b suggest that
the distribution fit improves significantly for DPMTL, for the
majority of the stations. GSpartan performs poorly with high
prediction and distribution errors especially in the southeastern
part of the United States, where there are more variability
in their precipitation time series. Although its RMSE is also
high for DPMTL in this region, its RMS-CDF improves
significantly. The maps also show that the distribution error is
generally lower for both methods along the Pacific and Atlantic
coastal areas.

Finally, we also examine characteristics of the predicted
distribution generated by the different algorithms. Fig. 7 shows
the precipitation histograms obtained using DPMTL, contour
regression and GSpartan for a station located at [32.75◦N ,
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(a) RMS-CDF error for GSpartan.
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(b) RMS-CDF error for DPMTL.

Figure 6: Comparison between the RMS-CDF of each station
for GSpartan and DPMTL (figure best viewed in color)

−97.77◦W ]. The results suggest that DPMTL has the best
fit to the ground truth distribution, compared to contour
regression and GSpartan. In particular, DPMTL was able to
capture the dual peaks and heavy tail of the distribution.
Both DPMTL and GSpartan also appear to capture the below
average precipitation values more effectively than GSpartan.
Although the plot was shown only for one of the stations, the
good fit obtained by DPTML was found in many other stations
in our dataset. In addition to their overall distribution, we also
examine how well the algorithms capture other characteristics
of the precipitation time series such as their annual cycle
(e.g., median monthly values over the prediction period). For
example, Fig. 8 shows the median pattern of annual cycle
for three stations, located at [26.59◦ N,−81.86◦ W], [30.11◦

N,−98.43◦ W], and [31.81◦ N,−106.38◦ W] respectively.
The results once again suggest that DPMTL captures the
median monthly values more effectively compared to a non-
distribution preserving method such as GSpartan. The ability
to better replicate the annual cycle is important particularly for
estimating useful metrics such as length of growing season.

In addition to their temporal patterns, we also examine
the spatial patterns of the predictions and compare them
against the ground truth spatial distribution. Figure 9 shows
the spatial distribution of precipitation for three separate time
periods. The maps in the first column correspond to the ground
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Figure 7: Histogram comparison of an example station.

truth spatial distribution of precipitation, while the remaining
two columns correspond to the estimated spatial distribution
generated by contour regression and DPMTL, respectively. For
these plots, both contour regression and DPMTL uses only
1/9-th of the dataset (from January 1970 to December 1974) as
its training set. Observe that the values generated by DPMTL
are spatially distributed in a much smoother way, whereas
contour regression has a higher tendency of producing more
extreme values. As an example, contour regression predicts
more extremely high precipitation events in the southern part
of the United States for February 1975 compared to DPMTL
and the ground truth. In contrast, contour regression predicts
more extremely low precipitation events in the midwestern
part of the United States for April 1975. DPMTL is more
conservative, capturing some of the locations with extreme
precipitation values without overestimating them. This is not
surprising as MTL can leverage its neighborhood information
to diminish some of its predicted extreme values. Nevertheless,
DPTML can also miss some of the valid patterns such as
the high precipitation events near the southeastern part of the
United States in April 1975.

V. RELATED WORK

Multi-task learning (MTL) is a machine learning approach
for solving multiple, related learning tasks jointly by exploiting
the common structure of the problem [4]. MTL improves
generalization performance by leveraging domain-specific in-
formation to enable the pooling of information across different
tasks, which is particularly useful when there are limited
training examples available to solve each prediction task
separately. It also provides a natural way to handle multi-
location prediction problems [5] [6] [7]. For example, in [7],
the prediction at each location can be considered a single
task, which is related to the prediction tasks at other nearby
locations. However, existing MTL methods focus primarily on
minimizing point-wise prediction errors, ignoring how well
the predicted distribution fits the true distribution of the data.
Alternative approaches such as quantile mapping [15] have
been developed to correct the bias between the true and
predicted distribution. However, such techniques tend to have
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Figure 8: The median annual cycle for three example weather
stations in the United States.

poor prediction accuracy [1]. While hybrid approaches such
as contour regression has been developed [1], they are mostly
designed for single-task learning.

VI. CONCLUSION

This paper presents a distribution preserving multi-task
regression framework for spatio-temporal data. Our framework
employs a Parzen window based kernel density estimation
(KDE) approach to compute the probability density function
and L2-distance to measure the difference between two dis-
tributions. We evaluated our method on a real-world climate
dataset, containing more than 1500 stations in the United
States, and showed that the proposed framework outperforms
existing non-distribution preserving methods in more than
90% of the stations. Furthermore, it also outperforms another
distribution preserving method based on single-task learning
in more than 60% of the stations.
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Figure 9: Spatial maps showing snapshots of monthly precipitation at different time periods.
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